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Abstract

We apply thermodynamic analysis in modeling, simulation and optimization of radiation engines as non-linear energy converters. We
also perform critical analysis of available data for photon flux and photon density that leads to exact numerical value of photon flux
constant. Basic thermodynamic principles lead to expressions for converter’s efficiency and generated work in terms of driving energy
flux in the system. Steady and dynamical processes are investigated. In the latter, associated with an exhaust of radiation resource mea-
sured in terms of its temperature decrease, real work is a cumulative effect obtained in a system composed of a radiation fluid, sequence of
engines, and an infinite bath. Variational calculus is applied in trajectory optimization of relaxing radiation described by a pseudo-New-
tonian model. The principal performance function that expresses optimal work depends on thermal coordinates and a dissipation index,
h, in fact a Hamiltonian of the optimization problem for extremum power or minimum entropy production. As an example of work limit
in the radiation system under pseudo-Newtonian approximation the generalized exergy of radiation fluid is estimated in terms of finite
rates quantified by Hamiltonian h. The primary results are dynamical equations of state for radiation temperature and work output in
terms of process control variables. In the second part of this paper these equations and their discrete counterparts will serve to derive
efficient algorithms for work optimization in the form of Hamilton–Jacobi–Bellman equations and dynamic programming equations.
Significance of non-linear analyses in dynamic optimization of radiation systems is underlined.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The contemporary theory of work flux in energy systems
includes both energy generators (engines) and refrigerators
or heat pumps. Locally, work flux is an indirect effect of
energy transfer between two reservoirs and a thermal
machine producing or consuming power. Energy systems
can be described by considering the behavior of efficiency,
energy flux, entropy production and mechanical power, in
steady and unsteady operations. Quite often, a quantitative
description of non-linear energy transfer in various parts of
the system assumes that the energy flux is proportional to
the difference of temperature in a certain power, T m. A spe-
cial importance is the case when m = 4, which refers to
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radiation engines. In our previous paper [1] we analyzed
effect of non-linear laws on efficiency of power production
and entropy generation in systems composed of a resource,
the environment and an imperfect (non-Carnot) thermal
machine. Observing that a finite flow of a resource fluid
in steady systems is consistent with a finite reservoir in
unsteady ones, we suggested that common dynamical equa-
tions describing changes of a driving fluid property in time
(spatial or chronological) can be obtained. Such equations
will be derived here for systems with radiation that produce
or consume work. They can serve as differential constraints
in problems of dynamical optimization, in particular as
constraints in work optimization problems. In the optimal
control theory such differential constraints are customarily
called the state equations.

In this paper we derive various state equations describ-
ing the temperature in power production systems with radi-
ation. These equations can be applied to formulate
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Nomenclature

A generalized exergy of a continuous process
a universal coefficient related to Stefan–Boltz-

mann constant
B classical available energy (exergy)
Cv heat capacity at a constant volume
c light speed
cmh molar heat capacity defined as the derivative dh/

dT

E internal energy
F free energy, cross-sectional area
G molar mass flux, total flow rate
g1, g partial and overall conductances
H, hv enthalpy and enthalpy of unit volume
HTU height of transfer unit
J flux density
kB Boltzmann constant
N number of particles
n mole number
m temperature exponent in exchange equation
P pressure, cumulative power output at a stage
p local power, constant of the photon flux in Eq.

(13)
Q1 cumulative heat
q1 driving energy flux
r1, r2 resistances, reciprocals of g1 and g2

S entropy, entropy of controlled phase
DS10 entropy change of the circulating fluid along the

isotherm T 10 in Fig. 1
DS20 entropy change of the circulating fluid along the

isotherm T 20 in Fig. 1
Sr entropy produced in the system
svgen

entropy generated per unit volume
T temperature of controlled phase
T1, T2 bulk temperatures of fluids 1 and 2
T 10 , T2 temperatures of circulating fluid (Fig. 1)
T e constant equilibrium temperature of environ-

ment

T 0 Carnot temperature, temperature of controlling
phase

t physical time, contact time
_T ¼ dT=ds rate of temperature change as the control

variable
u hydrodynamic velocity
V system volume, optimal work function
W = P/G work, power per unit flux
x transfer area coordinate

Greek symbols

a 0 overall heat transfer coefficient
e emission coefficient
g cumulative conductance
l chemical potential
g = p/q1 first-law efficiency
U factor of internal irreversibility
r Stefan–Boltzmann constant
rs rate of entropy production
s non-dimensional time, number of the heat trans-

fer units (x/HTU)

Subscripts

f flow quantity
i ith state variable
m molar quantity
mp maximum power point
N Newtonian
v per unit volume
0 reference state
1, 2 first and second fluid

Superscripts

e environment, equilibrium
f final state
i initial state
N total number of stages
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optimization algorithms, thus leading to optimal controls,
optimal trajectories and optimal performance functions.
Each optimal performance function represents a potential.
In the second part of this paper we will use a part of our
earlier results [1] and new findings obtained here to formu-
late efficient algorithms for work optimization in non-lin-
ear energy systems. With the help of these algorithms
work potentials can be found as principal functions of
related optimization problems. When suitable boundary
conditions are assumed in a non-linear system of interest
[3] the work potential becomes a finite-rate generalization
of the classical, reversible exergy [2]. This results in
enhanced bounds on work delivered from or supplied to
the system [3–6] in comparison with those implied by the
classical exergy, which is the reversible work potential.
Using in part results of [1] the present paper focuses on
radiative energy converters (engines and heat pumps) as
systems satisfying suitable balance laws and the second
law of thermodynamics. In particular, we focus on thermal
behavior and work flux from a sequence of radiation
engines (Fig. 1) for which we develop several (exact or
approximate) expressions for state equations.

Also with basic formulae of black radiation thermody-
namics and the Stefan–Boltzmann law (to describe effects
of emission and adsorption of radiation), a general formula
for converter’s efficiency follows, applicable when estimat-
ing an irreversible work limit as extension of the classical
work potential. The real work is a cumulative effect
obtained from a system composed of: radiation fluid at
flow, a set of sequentially arranged engines, and an infinite



Fig. 1. Sequential power generation in a flow system with radiation, as a
resource fluid. The scheme is a tool for evaluation of generalized exergy of
radiation fluid.
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bath. To set a maximum work problem for this system
(Fig. 1) the concept of a multistage process is used in which
each elementary stage is the Chambadal–Novikov–Cur-
zon–Ahlborn (CNCA) operation [3,4,7]. Each stage can
be illustrated on T–S diagram, and irreversibilities in ther-
mal machines can be considered by using internal irrevers-
ibility factor U (interpreted in Fig. 1 of our previous
paper [1]). In fact, the factor U is a synthetic measure of
the machine’s imperfection. By definition, U ¼ DS20=DS10

(where DS10 and DS20 are respectively the entropy changes
of the circulating fluid along the two isotherms T 10 and
T 20 ) equals the ratio of the entropy fluxes across the thermal
machine, U ¼ J s20=J s10 . The quantity U satisfies inequality
U > 1 for engine mode and U < 1 for heat pump mode of
the system. The use of an optimization method (e.g. varia-
tional calculus) leads to a finite-rate exergy of radiation.
This generalized exergy is a function of usual thermal coor-
dinates of radiation and a rate index, h. As every generalized
exergy, it implies bounds on the work delivered from (or
supplied to) the radiation fluid that are stronger than the
classical reversible bounds. In the reversible limit the classi-
cal exergy of radiation is recovered.

Black radiation is a specific fluid governed by its charac-
teristic statistical mechanics, thermodynamics and kinetics
(Section 2). The mechanism of energy transfer between that
fluid and a medium circulating in the engine has the signif-
icant influence on the efficiency of power production. In the
radiation case the energy transfer is strongly non-linear.
Instead of Newton’s linear law, the radiative energy trans-
fer obeys the law, q / D(T m), i.e. energy flux is propor-
tional to the difference in T m for m = 4. The performance
index or work W delivered in the radiation engine mode
is positive by assumption. In the heat-pump mode W is
negative, which means that the positive work (�W) must
be supplied to the system.

Performance bounds for thermal machines governed by
the transfer law q / D(Tm) are known from works of De
Vos [7], Gordon and Ng [8], Chen and Yan [9], Chen
et al. [10,11], Wu [12,13] and coworkers of these research-
ers. Recent treatments [1,3–6,8] relax the restriction to
steady systems (associated with infinite reservoirs), and
take into account the effect of internal irreversibilities
within energy generators (Carnot engines replaced by more
realistic thermal machines). Consequently, a typical con-
temporary theory is non-linear and treats imperfect pro-
cesses subject to the assumption of a finite resource (finite
hot reservoir).

The problem of a generalized exergy is associated with
work production by a finite resource interacting with the
environment in a finite time. To find extremum work and
associated exergy, optimization problems are considered,
for a maximum of work delivery [max W] and for a mini-
mum of the work supply [min(�W)]. The generalized
exergy is the maximum work that refers to a minimally irre-
versible, finite-rate process. It is quantified in terms of the
states of the resource and environment, a process rate index
(hamiltonian h) and an imperfection factor of the thermal
machine, U. While a number of formulae for generalized
exergies were recently proposed [1,3–6], their post-classical
terms were evaluated to date under the assumption of the
exponential relaxation to equilibrium, consistent with lin-
ear dynamics [1,6].

However, in radiation fluids, which are non-linear ther-
modynamic systems, fluid’s properties vary along the path,
and the optimal relaxation curve is non-exponential. Still
the shape of the optimal curve has to be determined from
the condition for the optimum power. In the present paper
various differential models of controlled relaxation dynam-
ics are studied, some of them differing with the degree of
accuracy of the process description. While simpler models
are easier to solve, those more complicated ones may
describe the related physics in a more exact way, and this
is why they may be preferred. Modifications of relaxation
models are also considered, depending on the mode of
energy exchange with the environment.

2. Thermodynamics of radiation

A part of this section contains the material familiar to a
physicist, yet we shall briefly adduce important formulae to
make the paper self-contained. This is, we believe, compen-
sated by the significance of novel information related to the
proper adjustment of the so-called photon flux constant
essential in consistent description of photon flows.

Free energy of radiation can be derived from Boson sta-
tistics [14]. The result is

F ¼ E � TS ¼ � 1

3
aVT 4 ¼ � 4

3c
rVT 4; ð1Þ
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where the universal coefficient a is related to the Stefan–
Boltzmann constant r ¼ P2k4

B(60h3c2)�1 by the direct and
inverse formula

a ¼ 4r=c r ¼ ac=4. ð2Þ

The entropy of homogeneous radiation occupying the vol-
ume V is then

S ¼ � oF
oT
¼ 4

3
aVT 3 ¼ 16

3c
rVT 3. ð3Þ

Whereas the radiation pressure P is

P ¼ � oF
oV
¼ 1

3
aT 4 ¼ 4

3c
rT 4 ð4Þ

and the energy of radiation is

E ¼ F þ TS ¼ aVT 4 ¼ 4

c
rVT 4. ð5Þ

This expression corresponds with the heat capacity at the
constant volume

CvðT ; V Þ ¼ 4aT 3V ¼ 16c�1rT 3V . ð6Þ
It follows (see below) that the number of photons in a
black box is also proportional to the product T3V. There-
fore, the useful conclusion stemming from Eqs. (3) and
(6) is that both entropy and heat capacity per one black
photon are constant.

Clearly, the following relations are valid

PV ¼ 1

3
aVT 4 ¼ 4

3c
rVT 4 ¼ E

3
. ð7Þ

Now we will make use of the fact that the free energy (1)
does not contain explicitly the number of particles N. From
Eq. (1) and free energy differential the chemical potential of
black radiation is

l ¼ ðoF =oNÞT ;V ¼ 0. ð8Þ

This is consistent with the vanishing Gibbs function for the
black radiation

G ¼ H � TS ¼ F þ PV ¼ � 1

3
aVT 4 þ 1

3
aVT 4 ¼ 0. ð9Þ

Associated with the vanishing chemical potential l is the
equality

H ¼ TS ¼ �T
oF
oT
¼ 4

3
aVT 4 ¼ 16

3c
rVT 4. ð10Þ

When a general formula for the first differential of the pres-
sure (grand) potential

dX ¼ �P dV � S dT � N dl ð11Þ
is applied to the function

X � �PV ¼ � 1

3
aVT 4 ¼ � 4

3c
rVT 4 ¼ �E

3
ð12Þ

correct pressure and entropy is obtained by partial differen-
tiation of X with respect to the volume and temperature.
On the other hand, differentiation of X with respect to
chemical potential (to get the particle number N) cannot
be effective due to the constancy of (vanishing) l.

Nonetheless, statistical mechanics calculations of quan-
tum theory [14–18] show that N is proportional to VT3,
or N/(VT3) = p0 is a constant. This also means that the pho-
ton flux, _N , the product of the density of photons N/V and
their mean flow velocity c/4, is proportional to T3. A
numerical value of the related proportionality constant,
also called the constant of the photon flux, is approximately

p ¼ 1:52� 1011 photons cm�2 K�3 s�1. ð13Þ
In terms of this quantity, the flux density of photons is
JN = pT3 photons cm�2 s�1. Of course, _N ¼ pT 3F , i.e. the
flux itself is the product of the quantity JN and the cross-
section area F. The literature values of p fluctuate depend-
ing on approximations made in statistical calculations.
From Landau and Lifshitz statistical evaluation of pho-
ton’s number [15]

N ¼ 0:244ðkBT �h�1c�1Þ3V

the value of p = 1.17 · 1011 photons cm�2 K�3 s�1 is ob-
tained, which differs from that given by Eq. (13). As we
shall show soon, both considered values are approximate,
but there is a way to find precise value of p or p0 based
on the requirement that photons must satisfy exactly the
state equation for an ideal gas.

Although the numerical value of p in Eq. (13) is not
exact we shall use it for a while to show how this approx-
imation influences the form of the state equation and val-
ues of some thermodynamic quantities referred to one
photon. The proportionality of N to VT3 means that the
entropy per one black photon S/N = constant and that
the energy of a single black photon is proportional to the
absolute temperature, T. With p of Eq. (13) the entropy
per one black photon is

sph ¼
S
N
¼ J s

J N

¼ ð4=3ÞrT 3

pT 3
¼ 4r

3p

¼ 4

3

� �
5:6696� 10�5 erg cm�2 s�1 K�4

1:52� 1011 cm�2 K�3

¼ 4:973� 10�16 erg K�1. ð14Þ

Comparing this value with the numerical value of the uni-
versal Boltzmann constant

kB ¼ 1:3807� 10�16 erg K�1

yields an approximate result

sph ¼ 3:60204kB. ð15Þ
The energy per one black photon is approximately

eph ¼
E
N
¼ rT 4

pT 3
¼ r

p
T

¼ 5:6696� 10�5 erg cm�2 s�1 K�4

1:52� 1011 cm�2 K�3
T

¼ 3:73� 10�16T ½erg� ð16Þ
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or as the multiplicity of kBT

eph

kBT
¼ 3:73� 10�16

1:3807� 10�16
¼ 2:70. ð17Þ

As PV = E/3, the energy density of photons may be written
as

E=V ¼ 3P ¼ 2:70NkBT =V ; ð18Þ
whence

PV ¼ 0:9NkBT . ð19Þ
As this is a perfect gas equation with a strange coefficient 0.9
instead of 1, it may be suspected that the coefficient value is
caused by approximations in statistical mechanics calcula-
tions of p0 = N/(VT3). In a newer approach, Massa [16] ex-
presses the average energy of a photon as 3kBT rather than
2.7kBT of Eq. (18). This gives a Wien coefficient that differs
from the Planck coefficient by only 6%. This also agrees
with Massa’s analysis when applied to one photon [18].
His results lead also to reasonable data of gravitational con-
straints on blackbody radiation and the maximum (Planck)
temperature [18].

We observe that, with Massa’s adjustment, photons, as
they should, are particles satisfying the perfect gas formula
exactly

PV ¼ NkBT . ð20Þ
Inversion of this formula and use of photons pressure in
terms of temperature, P = (1/3)aT4 = (4/3c)rT4, allows
for precise results of the photons number and density flux
in terms of their temperature and volume

N ¼ PðT ÞV
kBT

¼ a
3kB

T 3V ¼ 4r
3ckB

T 3V ; ð21Þ

J N ¼
N
V

c
4
¼ ac

12kB

T 3 ¼ r
3kB

T 3. ð22Þ

This result is the particle counterpart of the Stefan–Boltz-
mann formula for density of flowing energy

_E=V ¼ rT 4. ð23Þ
Applying in formula (16) the readjusted value 3kBT for the
energy per one black photon

eph ¼
E
N
¼ r

p
T ¼ 3kBT ð24Þ

yields the following value of the photon flux constant

p ¼ r
3kB

¼ ac
12kB

. ð25Þ

This yields the exact numerical value of p =
1.369 · 1011 photons cm�2 K�3 s�1 (roughly in the middle
between two values considered above). This is the value
that assures the satisfaction of the state equation of perfect
gas in photons world, and sets the value of single photon
entropy at the level sph = 4kB (see Eq. (27) below)). Eq.
(22) thus satisfies the expression JN = pT3 for the above va-
lue of p. The related result for the photon number N, Eq.
(21), is in terms of p
N ¼ P ðT ÞV
kBT

¼ 4r
3ckB

T 3V ¼ 4p
c

T 3V . ð26Þ

The photon density formula involves the constant p0 =
4p/c. The corresponding value of the entropy per one black
photon is

sph ¼
J s

J N

¼ ð4=3ÞrT 3

pT 3
¼ 4r

3p
¼ 4kB. ð27Þ

We can also speak about mass of black photons which is
the ratio of their energy E and c2. In particular, the division
of energy (16) by c2 yields the mass of single black photon
as the quantity increasing linearly with the absolute tem-
perature T. With this result and Eq. (14) one thus con-
cludes that the entropy per unit mass of the photon gas
is proportional to T�1 i.e. it decreases with T. Since the
number of photons increases with T3 and the energy per
one photon increases with T, their total mass in the en-
closed system, M, increases proportionally to T4. This is
in agreement with Eq. (5) which yields M = aVT4/c2.

3. Classical exergy of radiation

Work potential of radiation is particularly important in
applications. A number of ways to derive exergy of
enclosed radiation understood in classical sense can be
advocated. First, the exergy of radiation can be derived
from a general expression consistent with the exergy defini-
tion. As the classical exergy is the maximum reversible
work obtained from the system (radiation) and the envi-
ronment [2,19], the first differential of the radiation exergy
satisfies a general relationship

dB ¼ dE � T 0 dS þ P 0 dV � l0 dN

¼ ðT � T 0ÞdS � ðP � P 0ÞdV þ ðl� l0ÞdN ð28Þ

with l = 0 and l0 = 0. The integration of this expression
yields the familiar formula

B ¼ E � E0 � T 0ðS � S0Þ þ P 0ðV � V 0Þ þ l0ðN � N 0Þ;
ð29Þ

where the last term vanishes for the black radiation. This is
the first formula from which the radiation exergy follows in
the so-called Petela’s form (Eq. (36) below). On the other
hand, the formula can easily be transformed to a simpler
form after applying the well-known thermodynamic
relation

E ¼ TS � PV þ lN ð30Þ
for the two states considered, where the first state is the
current state and the second one is the zeroth (equilibrium)
state

E0 ¼ T 0S0 � P 0V 0 þ l0N 0. ð31Þ
The result is

B ¼ E � T 0S þ P 0V þ l0N ð32Þ

or equivalently, after repeated use of formula (30)
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B ¼ ðT � T 0ÞS � ðP � P 0ÞV þ ðl� l0ÞN . ð33Þ
For the black radiation its chemical potentials l and l0

equal zero, hence

B ¼ ðT � T 0ÞS � ðP � P 0ÞV ð34Þ
and its first differential satisfies Eq. (28) with l = 0.

Eq. (34) provides probably the simplest way to obtain
the radiation exergy enclosed in the volume V. Applying
in Eq. (34) the formulae describing entropy S and pressure
P in terms of temperature T and volume V, Eqs. (3) and
(4), yields familiar Petela’s formula for the exergy density

bv � B=V ¼ a
3
ð3T 4 � 4T 3T 0 þ T 4

0Þ ð35Þ

[20]. Its alternative form is

B ¼ aT 4V 1� 4

3

T 0

T
þ 1

3

T 0

T

� �4
 !

. ð36Þ

The large bracket of this equation contains Petela’s effi-
ciency of the energy conversion, gP.

Let us transform exergy Eq. (34) using the condition of
vanishing Gibbs function, G = 0. The condition assures the
equalities TS = H and T0S0 = H0. Clearly from Eq. (34)

B ¼ H � T 0S � ðP � P 0ÞV . ð37Þ
But in view of the equality T0S0 = H0 one may subtract
from this result H0 and simultaneously add T0S0. This
yields

B ¼ H � H 0 � T 0ðS � S0Þ � V ðP � P 0Þ. ð38Þ
This result proves that the exergy of enclosed radiation,
satisfying Petela’s formula (36), can also be found from
the enthalpy counterpart of standard equation (29) subject
to the condition l = l0 = 0, valid for black photons. One
can observe a simple connection between Eq. (38) and that
describing exergy flux per unit photon flux (see further
text). While formula (36) complies with other results [20–
22], it is not non-debatable since a number of authors
advocated different equations for the exergy of enclosed
radiation [19,23]. A through discussion of these issues can
be found in papers quoted above and in reviews [24–26].
Our results here confirm that Eq. (36) is valid for the en-
closed radiation but, otherwise, they show that its flow
counterpart cannot be described by Petela’s formula de-
spite of some literature claims (see Section 4). This also
means that Petela’s efficiency is restricted to enclosed radi-
ation and ceases to be valid for steady photon flux.

A suitable way to evaluate and interpret the classical
exergy of radiation is provided by an equation given
recently by Ozturk and his coworkers who developed a
general scheme of thermodynamic transformations involv-
ing availability rather than entropy [27,28]. For a heat

pump mode of the process (departure from the equilibrium)
their equation reads

dB¼ 1�T 0

T

� �
CvðT ;V ÞdT þ ðT �T 0Þ

oP
oT

� �
V

�ðP �P 0Þ
� �

dV .

ð39Þ
Using in this equation the expressions for the pressure

P ¼ 1

3
aT 4 ¼ 4

3c
rT 4 ð4Þ

and heat capacity

CvðT ; V Þ ¼ 4aT 3V ¼ 16c�1rT 3V ð6Þ
yields the perfect differential of exergy B in the form

dB ¼ 4aVT 3 1� T 0

T

� �
dT þ a

3
ð3T 4 � 4T 3T 0 þ T 4

0ÞdV ;

ð40Þ
where

bv � B=V ¼ a
3
ð3T 4 � 4T 3T 0 þ T 4

0Þ

is the exergy of unit volume in Petela’s form (35). Eq. (40)
in a sense replaces a similar one with particle number N as
a variable known in the classical thermodynamics of open
systems. In the radiation case the use of the particle num-
ber variable simultaneously with T would be inappropriate
since N is a function of T rather than an independent coor-
dinate of state. On the other hand, Eq. (40) contains two
independent variables T and V that properly characterize
the physical state of the system.

An integral form of Eq. (40) for a process starting at
(T0,V0) and terminating at (T,V) is

B ¼
Z T ;V

T 0;V 0

1� T 0

T

� �
4aVT 3dT þ a

3
ð3T 4 � 4T 3T 0 þ T 4

0ÞdV .

ð41Þ
To calculate the integral we start at the point T0, V0 and
first integrate with respect to temperature along the hori-
zontal line of the constant volume V = V0. After the tem-
perature achieves its upper limit T, the integration is with
respect to volume, along a vertical of a constant T, until
the upper limit of volume V is attained. The result of inte-
gration is

B ¼ aV 0ðT 4 � T 4
0Þ � T 0

4

3
aV 0ðT 3 � T 3

0Þ

þ a
3
ð3T 4 � 4T 3T 0 þ T 4

0ÞðV � V 0Þ ð42Þ

and the rearrangements yield

B ¼ a
3
ð3T 4 � 4T 3T 0 þ T 4

0ÞV 0

þ a
3
ð3T 4 � 4T 3T 0 þ T 4

0ÞðV � V 0Þ. ð43Þ

Thus finally

B ¼ a
3
ð3T 4 � 4T 3T 0 þ T 4

0ÞV ð44Þ

in accordance with Petela’s formula (35).
For the engine mode of the process (approach to the

equilibrium) the sign of the right hand side of Eq. (39) is
inverted, and for the radiation engine

dB ¼ � 1� T 0

T

� �
4aVT 3 dT � a

3
ð3T 4 � 4T 3T 0 þ T 4

0ÞdV .

ð45Þ
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Integration of this equation for the inverse reversible pro-
cess starting at (T,V) and terminating at (T0,V0) requires
the evaluation of the integral

B¼
Z T 0;V 0

T ;V
� 1� T 0

T

� �
4aVT 3 dT � a

3
ð3T 4� 4T 3T 0 þ T 4

0ÞdV .

ð46Þ
Due to absence of derivatives with respect to T and V and
the perfect differential property of the integrand, the inte-
gration result is the same; i.e. Eqs. (35) and (44) are ob-
tained again. This shows that in reversible processes work
produced in a certain process equals to that consumed in
its inverse. That property is associated with the potential
nature of classical exergy, and does not longer hold when
any residual dissipation is admitted in processes with finite
rates.

4. Flux of classical exergy

Consider now flow of black photons. The total time
derivative of the exergy of enclosed volume

_B ¼ 1� T 0

T

� �
4aVT 3 _T þ a

3
ð3T 4 � 4T 3T 0 þ T 4

0Þ _V ð47Þ

does not represent the exergy flux. The situation is similar
to that for energy at flow when the time derivative of the
enclosed energy is not the energy flux because the latter
incorporates the work against the pressure forces. As the
energy flux is the product of the enthalpy density and
the volume flux, the flux of radiation exergy, _Bf , satisfies
the general thermodynamic formula _Bf � _Bþ ðP � P 0Þ _V .
Using this formula and Eq. (38) one obtains for radiation
fluid

_Bf � _Bþ ðP � P 0Þ _V ¼ fhv � hv0 � T 0ðsv � sv0Þg _V ; ð48Þ
where subscript v refers to respective quantity per unit vol-
ume (density). The same result can be obtained from Eq.
(29). Eq. (48) complies with results of general thermody-
namics. It is also consistent with an expression for revers-
ible power production associated with exergy flux _Bf ,
represented by the integral

_Bf ¼ �
Z T 0;P 0

T ;P

_V cvðT Þ 1� T 0

T

� �
þ dP

dT

� �
dT . ð49Þ

By applying heat capacity density at the constant volume cv

we omit here familiar difficulties associated with an infinite
heat capacity of photons at the constant pressure. As for
black radiation dP = (4/3)aT3 dT, we calculate the enthal-
py-related power _Bf using a substitutional heat capacity

chðT Þ � cvðT Þ þ dP=dT ¼ ð4þ 4=3ÞaT 3

¼ ð16=3ÞaT 3. ð50Þ

It may be noted that ch/cv = 4/3 and that the entropy con-
tribution to power is still governed by cv. We recall that in
each black radiation system the value 4/3 is the power coef-
ficient in an equation of isoentropic, adiabatic process,
PV4/3 = f(S). In fact, equations describing radiation in this
process are formally identical with equations of perfect
gases in which the ratio cp/cv equals 4/3. In the case of
black radiation the analogy is only formal because the heat
capacity cp (partial derivative of enthalpy with respect to T

at a constant P) is infinite (P is a function of T for the black
radiation).

Substitution of Eq. (50) into (49) yields an integral of
reversible power produced by black radiation at flow

_Bf ¼ �4a _V
Z T 0

T
fð4=3ÞT 3 � T 2T 0gdT . ð51Þ

Its integration between a variable initial temperature T and
a constant final temperature T0 yields

_Bf ¼
4

3
a _V ððT 4 � T 4

0Þ � T 0ðT 3 � T 3
0ÞÞ. ð52Þ

The reader can quickly generalize this result to the
power formula applicable when both integration limits
are arbitrary, i.e. when the temperature of the environment
is not necessarily an integration limit.

Below we verify that Eqs. (49) and (52) describe indeed
the enthalpy-based exergy flux of black radiation, i.e. that
they satisfy general thermodynamic formula _Bf � _Bþ
ðP � P 0Þ _V . From Eq. (52)

_Bf ¼
4

3
aðT 4 � T 4

0Þ � T 0

4

3
aðT 3 � T 3

0Þ
� �

_V

¼ ðhv � hv0 � T 0ðsv � sv0ÞÞ _V ¼ _Bþ ðP � P 0Þ _V . ð53Þ

Yet, some specific formulae hold for radiation caused by
the condition l = 0 for black photons. The upper line of
Eq. (53) yields after simplification

_Bf ¼
4

3
aðT 4 � T 3T 0Þ _V ¼ 4

3
aT 4ð1� T 0=T Þ _V . ð54Þ

But, since the enthalpy density satisfies the formula

hv ¼ Tsv ¼
4

3
aT 4 ¼ 16

3c
rT 4; ð10Þ

we conclude that the exergy flux of black photons is equal
to the product of the enthalpy flux and the Carnot
efficiency

_Bf � fhv � hv0 � T 0ðsv � sv0Þg _V ¼ 4

3
aT 4 _V ð1� T 0=T Þ

¼ hvð1� T 0=T Þ _V . ð55Þ

In brief, the flux of the classical exergy of radiation satisfies
the formula

_Bf ¼ _H fð1� T 0=T Þ ¼ _SfðT � T 0Þ. ð56Þ

The energy flux is expressed above as in the case of usual
substance, i.e. in terms of enthalpy flux, hv

_V , and the entro-
py flux equals sv

_V .
In conclusion, the calculation of exergy flux of radiation

is as exact as that of a substance, and the same general for-
mulae can be applied provided that the constraint P = P(T)
is incorporated for radiation.
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5. Efficiencies of energy conversion

The enthalpy base of the energy flux is in complete
agreement with the energy flux formula obtained as the for-
mal component of the energy momentum tensor for isotro-
pic radiation [17]. The enthalpy-based exergy efficiency is
that of Carnot

gJ �
_Bf

_H f

¼ ð4=3ÞaðT 4 � T 3T 0Þ _V

ð4=3ÞaT 4 _V
¼ 1� T 0

T
ð57Þ

in agreement with Jeter’s result for the radiation conver-
sion [23]. This result can be compared with Petela’s effi-
ciency, for which

gP �
B
E
¼ 1� 4

3

T 0

T
þ 1

3

T 0

T

� �4

. ð58Þ

This expression is often called the Landsberg–Petela–Press
efficiency as it was derived independently by each of these
authors. It predicts efficiencies lower than Carnot. Numer-
ous efficiency formulae are available in Refs. [24–26,29–33],
where, in particular, it is explained that efficiency (58) takes
into account more irreversibilities than efficiency (57).
Spanner’s efficiencies can additionally be quoted [19] whose
values lie between the values of efficiencies of Carnot and
Petela

gSp �
B
E
¼ 1� 4T 0

3T
. ð59Þ

The discrepancies between various efficiencies were ex-
plained by Bejan [24]. Using his procedure under the
framework of endoreversible thermodynamics Badescu
[30–32] found relationships generalizing Jeter [23], Spanner
[19] and Petela [26] efficiencies. For example, the relation
generalizing the last efficiency is

gB � 1� 4

4� n
T 0

T

� �n

þ n
4� n

T 0

T

� �4

; ð60Þ

where n is a parameter characterizing endoreversible ther-
mal engine. For n = 1 (the case of Carnot engine) Petela’s
efficiency is recovered from Eq. (60). As already said, Pete-
la’s efficiency is lower then that of Carnot. Badescu [34] ar-
gues that this is so because it takes into account two
irreversibilities, filling the system with and emptying it of
radiation. More irreversibilities – less efficiency is a simple
rule stemming from the discussed works. Yet, except [1],
these works ignore (factor of) internal irreversibilities U,
which also contribute to the efficiency decrease in practical
systems.

6. Towards a dissipative exergy of radiation at flow

Further analysis is directed towards generalization of the
radiation exergy for finite rates. As dissipative components
are present in real reservoirs and within energy generators,
any finite rates involve an inevitable minimum of dissipa-
tion. To define a rate-dependent exergy that extends the
classical exergy for processes with dissipation a sequence
of Chambadal–Novikov–Curzon–Ahlborn (CNCA) ther-
mal machines is the basic theoretical tool. During the
approach to the equilibrium the so-called engine mode of
the system takes place in which work is released, during
the departure – the so-called heat-pump mode occurs in
which work is supplied. The work W delivered in the engine
mode is positive by assumption (engine convention).

It is advisable to recognize the quantities that do not
vary along paths of flow processes. In sequential processes
with constant cross-sectional area F that are pertinent for
exergy evaluation one of the constants is the flux density
of the radiation volume, Jv

J v ¼
_V
F
� u. ð61Þ

The constancy of Jv = u means that an average macro-
scopic velocity of the photons mixture in the direction of
its flow, u, is the same for each point of the system. (For
a special case of photons leaving the black box the constant
value of u = Jv equals c/4.) For sequential processes, in
which cross-sectional area F perpendicular to the photon
flow is natural constant quantity, the constancy of the vol-
umetric density of photons, u = Jv, implies the constancy of
their volume flux through the stages

_V ¼ FJ V ¼ Fu. ð62Þ
In steady macroscopic flows of black photons, the con-
stancy of volume flux _V may be compared with that of par-
ticle flux for traditional particles. In fact, the constancy of
_V in a steady flow system is the counterpart of the condi-
tion of constant volume V in the enclosed system. For tra-
ditional particles the particle flux is conserved along a flow,
for photons this is not a case. As the photon flux satisfies
the equality

_N ¼ N
V

_V ð63Þ

and the density of black photons N/V is a function of T
which varies along the flow, the flux of black photons can-
not be constant in systems with a constant _V . Using perfect
gas formula (20) associated with Massa’s assumption
eph = 3kBT [16] we evaluate the variation of photon flux
along the process path in terms of current temperature T

and volume flow _V

_N ¼ a
3kB

T 3 _V ¼ 4r
3ckB

T 3 _V . ð64Þ

The corresponding flux density of photons is

J N ¼
_N
F
¼ 4r

3ckBF
T 3 _V . ð65Þ

For constant _V these formulae ensure a decrease of _N and
JN in the engine mode of the process when T decreases
along the path and energy is delivered from the radiation
engine. On the other hand, the formulae ensure an increase
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of _N and JN when energy is consumed in a radiation-utiliz-
ing heat pump mode and radiation temperature T increases
along the path. For constant volume flux, _V , both N and _N
depend on T in the same way, and Eq. (63) implies con-
stancy of photons volume along the path of the considered
process. This means that the state of flowing photons (T,V)
contains one redundant variable, V. Therefore, when
describing steady, one-dimensional photon flows, it suffices
to use T as the only variable, similarly as in the case of en-
closed radiation.

In irreversible finite-rate situations quasistaticity is lost
and any extension of exergy to irreversible situations is
non-trivial. It is due to finite rates that instantaneous effi-
ciencies g are different from those of Carnot at each time
instant. Therefore before any formulation of a work inte-
gral prior evaluation of a proper efficiency g should be
made. In optimization approaches based on the variational
calculus, g has to be evaluated as a function of state T and
rate dT/ds, to assure the functional property (path depen-
dence) of related work integral. As any exergy is a limiting
work, its evaluation must be associated with the optimiza-
tion that maximizes work W and assures an optimal path.
The optimal work follows in the form of a potential func-
tion that depends on the end states and duration. This
function is a finite-rate exergy when the final state of engine
mode is that of equilibrium with the environment. Another
function, also exergy type, is obtained when the initial state
of heat-pump mode is that of equilibrium with the environ-
ment. While the reversibility property is lost for extended
exergies, their kinetic bounds are stronger and hence more
useful than classical thermostatic bounds. This substanti-
ates the role of extended exergies for evaluation of energy
limits in practical systems.

For the exergy evaluation the finiteness of the resource
(radiation fluid) is essential; this makes the power produc-
tion process unsteady in time. The analysis of a single
CNCA unit is insufficient in this case, rather the treatment
of complex sequential system with (finite or infinite number
of) CNCA units is necessary. The work-production process
involves the active energy exchange between two fluids
through finite ‘‘conductances’’ (products of the effective
transfer coefficient and the area). In the case of the radia-
tion exergy the first fluid in Fig. 1 is the radiation fluid.
As it follows from the Stefan–Boltzmann law, the transfer
coefficient of radiation fluid a1 is necessarily temperature
dependent, a1 ¼ 4reT 3

1. The second fluid is a low-tempera-
ture fluid representing either low temperature radiation or
the usual environment composed of the common sub-
stances of the Earth, as defined in the exergy theory. In
any case the second fluid possesses a boundary layer as
its own dissipative component, so that the corresponding
exchange coefficient is a2. (The second coefficient of the
energy exchange in the system, a2, can also be temperature
dependent.) In the physical space, the direction of the mac-
roscopic flow of radiation is along a horizontal coordinate
x. Depending on the choice of the second fluid, two various
exergy-like functions are obtained.
However, the use of transfer coefficients ai is unneces-
sary in radiation problems. In fact, functions a1 ¼ a10T 3

1

and a2 ¼ a20T 3
2 are applied only in the so-called pseudo-

Newtonian approach when, by assumption, a temperature
dependent conductance is attributed to the driving force
defined as the simple temperature difference. As we shall
see later, the virtue of the pseudo-Newtonian approach is
its potential of getting an analytical solution under an
approximation of an overall coefficient for energy transfer.
While this takes into account the temperature dependence,
more exact approaches to the energy flux are preferred that
involve differences of temperature T in power m = 4, i.e.
use the Stefan–Boltzmann law. Then the concept of the
effective transport coefficient is abandoned. However, these
approaches do not lead to analytical solutions, so that
numerical optimization techniques must be developed.
They are briefly characterized below, see also [1].

We begin with the considerations of symmetric non-lin-
ear case in which the energy transfer rate is proportional to
the difference of absolute temperatures in power m The
case of m = 4 refers to the radiation, m = �1 to the Onsa-
gerian kinetics and m = 1 to the Fourier law of heat
exchange. (In the Onsagerian case quantities gi are negative
in the common formalism.)

Next we adduce the ‘‘hybrid non-linear case’’ in which
the kinetics in the lower reservoir is Newtonian. The
upper-temperature fluid is still governed by the kinetics
proportional to the difference in Tm. Still other cases are
possible, as, e.g. the case with the environmental kinetics
governed by laws of the natural convection (where
q / (DT)m), and some ‘‘mixed’’ cases.

Consequently, variety of physical models and related
optimization algorithms can be applied, each model lead-
ing to its own generalized exergy function.

7. Basic analytical formulae of steady pseudo-Newtonian

model

First we focus on a single infinitesimal CNCA engine as
a one-stage component of the sequential system shown in
Fig. 1. Next, an analysis will be developed to model cumu-
lative power output (input) from (to) an infinite number of
infinitesimal steps that model thermal behavior and exergy
of the sequential system at the continuous limit. As the the-
ory of elementary CNCA process is well known, we briefly
present here its counterpart called Stefan–Boltzmann
engine under the pseudo-Newtonian approximation and
then pass to main formulae associated with cumulative
power and entropy production of the sequential system
at its continuous limit.

A single engine in Fig. 1 depicts an infinitesimal stage of
the system. The location of this stage in the system is
between x and x + dx, where x is the geometric coordinate
in the direction of the radiation flow. In a steady situation
the state changes of the fluid in the differential engine (two
isotherms and two irreversible adiabates) are stationary
loops in the space. The radiation fluid (subscript 1) flows
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as a whole in the direction of the axis x with a finite volume
flux, _V . The unknowns T 10 and T 20 (explicit in Fig. 1) are
upper and lower temperatures of the fluid circulating in
each engine. Between x and x + dx located is the circula-
tion loop of each small engine and the differential conduc-
tances g1 = dc1 and g2 = dc2, where dc1 = a1(T1)dA1 and
dc2 = a2(T2)dA2. The differentials dA1 and dA2 are two
exchange areas at the infinitesimal stage. They are compo-
nents of the composite area A whose differential satisfies
dA = dA1 + dA2. The overall conductance c is defined in
terms of g1 = dc1 and g2 = dc2 in the traditional way;
(dc)�1 = (dc1)�1 + (dc2)�1. Consequently, dc is the product
of an overall coefficient of heat transfer, a 0, and total differ-
ential area dA.

The differential flux, d _Q1, is the energy flux subtracted
from the radiation fluid when its state changes from T1

to T1 + dT1. The radiative energy exchange d _Q1 occurs
by the emission and adsorption of radiation in the temper-
ature range T1 and T 10 . In the pseudo-Newtonian modeling
the (non-Newtonian) flux of the exchanged radiation
energy is the product of the variable coefficient g1 ¼
dc1 ¼ a1ðT 3

1ÞdA1 and the temperature difference T 1 � T 10 .
When the exact Stefan–Boltzmann law is used its energy
exchange model takes rigorously into account entropy gen-
eration caused by simultaneous emission and absorption of
black-body radiation. The entropy generation is the ‘‘clas-
sical’’ sum: d _Q1ðT�1

10 � T�1
1 Þ þ d _Q2ðT�1

2 � T�1
20 Þ, where d _Q1

is given by the Stefan–Boltzmann law.
The low-T part of the engine releases the heat propor-

tional to T 20 � T 0 to the environment (or fluid 2) through
conductance dc2. This conductance can also be tempera-
ture dependent, as discussed below.

Due to the engine imperfection the first-law efficiency of
each infinitesimal unit is given by the pseudo-Carnot for-
mula, g ¼ 1� UT 20=T 10 [1], where U ¼ DS20=DS10 ¼
J s20=J s10 is the parameter of internal irreversibility. U is
measured in terms of the entropy changes of the circulating
fluid along the two isotherms T 10 and T 20 . Yet, T 10 and T 20

are not independent but connected by the entropy balance

g2ðT 2ÞðT 20 � T 2Þ
T 20

� U
g1ðT 1ÞðT 1 � T 10 Þ

T 10
¼ 0. ð66Þ

We invert pseudo-Carnot formula, g ¼ 1� UT 20=T 10 , to
substitute T 20 ¼ ð1� gÞU�1T 10 into the above entropy bal-
ance. We then obtain an equation for T 10

T 10 ¼ ðg1 þ U�1g2Þ
�1ðg1T 1 þ ð1� gÞ�1g2T 2Þ. ð67Þ

With this result the flux of the radiation energy,

q1 ¼ d _Q1 ffi g1ðT 3
1ÞðT 1 � T 10 Þ; ð68Þ

exchanged by simultaneous emission and adsorption fol-
lows in the pseudo-Newtonian formalism as

q1 ¼ g0ðT 1 � UT 2=ð1� gÞÞ. ð69Þ

In Eq. (69) operational overall conductance was defined
with all gi as functions of respective bulk temperatures of
reservoirs
g0 � g2g1ðUg1 þ g2Þ
�1 ¼ ðg�1

1 þ Ug�1
2 Þ
�1. ð70Þ

This, in fact, is the overall conductance of an inactive heat
transfer that is suitably modified due to the presence of
coefficient of internal dissipation. The work flux (power)
follows in the form

p ¼ gq1 ¼ gg0ðU; T 1; T 2Þ T 1 �
UT 2

1� g

� �
. ð71Þ

The expression

T 0 ¼ UT 2ð1� gÞ�1 ð72Þ
appearing in Eqs. (69) and (71) describes the so-called Car-
not temperature in terms of the efficiency. The thermody-
namic definition of Carnot temperature is T 0 � T 2T 10=T 20

[1]. Despite temperature dependent conductances g1 and
g2, Eq. (71) yields the same maximum power efficiency
gmp ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UT 2=T 1

p
as for engines driven by usual fluids

whose heat flux is governed by (linear) Newtonian law of
cooling. However, the non-linearity of radiation conduc-
tance g1 becomes essential in dynamical problems, when
the temperature of photons changes along the path.

Quite generally, i.e. regardless the form of kinetics
involved, the differential of total entropy produced is
obtained [1]

dSr ¼
dQ1

T 2

U
T 20

T 10
� T 2

T 1

� �

¼ dQ1

ðU� 1Þ
T 0

þ 1

T 0
� 1

T 1

� �� �
. ð73Þ

Yet, generality of Eq. (73) is limited to forms not involving
time t. In fact, the time derivative of this equation, i.e.
power of entropy production contains energy flux q1 that
is certainly influenced by the form of a respective kinetic
formula, e.g. Eq. (77) below.

In pseudo-Newtonian description of power yield driven
by non-linear exchange processes conductances gi are only
functions of temperatures of respective reservoirs. This is
an approximation because, in fact, they are also influenced
by temperatures of fluid circulating in the engine. A way to
improve this situation is described below.

8. Steady non-linear models applying Stefan–Boltzmann

equation

In a more exact modeling of radiation engines we aban-
don the concept of transfer coefficients and related conduc-
tances and exploit the Stefan–Boltzmann equation for
energy transfer in its exact form.

In the symmetric non-linear case [1] we assume that the
energy flux exchanged in each reservoir depends on the dif-
ference of temperatures in the same power m

q1 ¼ g1ðT m
1 � T m

10 Þ. ð74Þ
(m = 4 for radiative energy exchange and 1 for Newtonian
one.) Conductances gi are now constants, different that
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those of previous section, yet, as usual, they are propor-
tional to the respective areas; gi = riAi, where each ri is
the product of Stefan–Boltzmann constant r and emission
coefficient ei. We can still use the notion of Carnot tem-
perature T 0 � T 10T 2=T 20 as a suitable control variable in en-
gine modeling [1]. From this definition temperature T 20

satisfies the inverse expression T 20 � T 10T 2=T 0. Substitut-
ing this expression into internal balance equation for
entropy

Ug1ðT m
1 � T m

10 Þ=T 10 ¼ g2ðT m
20 � T m

2 Þ=T 20 ð75Þ
and solving the result obtained with respect to T 10 yields

T 10 ¼ T m
1 � g2

T m
1 � T 0m

Ug1ðT 0=T 2Þm�1 þ g2

 !1=m

. ð76Þ

From Eq. (76) and Eq. (74) written in the form

T 10 ¼ ðT m
1 � q1=g1Þ

1=m ð740Þ
energy flux q1(T 0) follows

q1 ¼ g1g2

T m
1 � T 0m

Ug1ðT 0=T 2Þm�1 þ g2

. ð77Þ

This formula represents ‘‘thermal characteristics’’ of the
system. An expression for T2 0 corresponding with (76) fol-
lows from the thermodynamic definition of Carnot temper-
ature, T 20 � T 10T2/T 0. Also, one may calculate heat flux
q2 = q1(1 � g) = UT2q1/T 0. The power yield related to Eq.
(77) is

p ¼ g1g2

T m
1 � T 0m

Ug1ðT 0=T 2Þm�1 þ g2

1� U
T 2

T 0

� �
. ð78Þ

The maximization of p can be performed analytically or
graphically, using Carnot temperature T 0 as the free
control.

The entropy generation caused by simultaneous emis-
sion and absorption of black body radiation is the external
part of the total entropy production that follows as the
‘‘classical’’ sum:

rext
s ¼ q1ðT�1

10 � T�1
1 Þ þ q2ðT�1

2 � T�1
20 Þ; ð79Þ

where each qi incorporates the Stefan–Boltzmann law. Yet,
this is only a part of the entropy production in the system.
For the ‘‘symmetric’’ kinetics governed by the differences in
Tm the T 0-representation of the total entropy production in
the system follows from Eqs. (73) and (77)

rs ¼ g1g2

T m
1 � T 0m

Ug1ðT 0=T 2Þm�1 þ g2

ðU� 1Þ
T 0

þ 1

T 0
� 1

T 1

� �� �
.

ð80Þ

In this model no explicit formula exists for mechanical
power or entropy production in terms of driving energy
flux, q1. A hybrid model, considered below, offers such
opportunity.

In the non-symmetric or hybrid non-linear case [1] the
radiation law (m = 4) governs the energy flow in the upper
reservoir only, whereas the energy exchange in the lower
one is Newtonian

q2 ¼ g2ðT 20 � T 2Þ. ð81Þ
As before, to get T 10 in terms of T 0 we substitute the expres-
sion T 20 � T 10T2/T 0 into the suitable (internal) balance
equation for the entropy

Ug1ðT m
1 � T m

10 Þ=T 10 ¼ g2ðT 20 � T 2Þ=T 20 . ð82Þ
Yet, the procedure leads now to T 0 explicit in terms of T 10

rather than T 10 in terms of T 0

T 0 ¼ T 10 � Ug1ðT m
1 � T m

10 Þ=g2. ð83Þ
The mechanical power p in terms of T 10 is

p ¼ q1g

¼ g1ðT m
1 � T m

10 Þ 1� UT 2

T 10 � Ug1ðT m
1 � T m

10 Þ=g2

� �
. ð84Þ

The large bracket of this formula contains the pseudo-Car-
not efficiency expressed in terms of temperature T 10 rather
than in T 0. With Eq. (74), the energy flux representation
of power (84) is readily obtained

p ¼ q1g ¼ q1 1� UT 2

ðT m
1 � q1=g1Þ

1=m � Uq1=g2

 !
. ð85Þ

The corresponding entropy production satisfies Eq. (73)
with T 0 defined by (83). Hence the power of entropy gener-
ation in terms of temperature T 10 is

rs ¼ g1ðT m
1 � T m

10 Þ
U

T 10 � Ug1ðT m
1 � T m

10 Þ=g2

� 1

T 1

� �
. ð86Þ

For the upper reservoir T 10 ¼ ðT m
1 � q1=g1Þ

1=m, and Eq. (83)
yields the following expression for Carnot temperature T 0

in terms of q1

T 0 ¼ T 10 � Ug1ðT m
1 � T m

10 Þ=g2

¼ ðT m
1 � q1=g1Þ

1=m � Uq1=g2. ð87Þ

Eqs. (86) and (87) now lead to the representation of the en-
tropy source in terms of q1

rs ¼ q1

U

ðT a
1 � q1=g1Þ

1=m � Uq1=g2

� 1

T 1

 !
. ð88Þ

Eqs. (78), (84) or (85) allow analytical or graphical max-
imization of power with respect to a single control variable,
T 0, T1 0 or q1. Due to reversible component of power that
persist for vanishing rates these equations have non-trivial
optimal solutions even in absence of constraints on the
rates. Optimization leads to the steady limits on power pro-
duction in imperfect units. On the other hand Eqs. (80),
(86) and (88) for entropy source have non-trivial optimiza-
tion solutions only when their control variables are con-
strained. Otherwise they imply vanishing rs at the
reversible Carnot point as an unconstrained minimum for
rs. In dynamical problems considered below the constraints
are those resulting from balances of energy and matter.
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9. Dynamical theory for pseudo-Newtonian models

In dynamical problems temperature of at least one of
the reservoirs changes (decreases in engine mode of the
sequential process) due to the reservoir’s finite capacity.
This is the case involving a finite resource, appropriate to
define an exergy. By integration of power expressions of
previous section, functionals of cumulative power genera-
tion (consumption) and related exergies are obtained.

Our exergy-directed analysis extends those previous
ones by considering the sequential operation with internal
irreversibilities (within thermal machines of each stage).
The factor of internal irreversibilities, U, satisfies inequality
U > 1 for engine mode and U < 1 for heat pump mode of
the system. In terms of U suitable formulae follow for gen-
eralized work and exergy in finite resource systems. Use of
the substitutional quantity ch(T), Eq. (50), leads to the
enthalpy density of black photons and allows to overcome
known difficulties resulting form infinite value of cp of pho-
ton gas.

As already remarked several physical models can be
applied, each leading to its own generalized exergy. Below
we shall consider these models in an order. First we focus
on the pseudo-Newtonian model and corresponding exer-
gies for two modes considered.

We begin with the energy exchange formula (69) written
in terms of quantities cumulative along the process path

d _Q1 � dc0ðT 1 � UT 2=ð1� gÞÞ. ð89Þ
Its inversion yields the first-law efficiency of the imperfect
process in the form

g ¼ 1� U
T 0

T � d _Q1=dc0
¼ 1� U

T 0

T � d _Q1=ða0 dAÞ
; ð90Þ

where T designates any value of T1 on the path. The deriv-
ative term t = �d _Q1/dc 0 is a control with units of temper-
ature itself. It may be written in the form of several
alternative expressions

d _Q=dc0 � �t ¼ � _V chðT ÞdT =ða0ðT ÞavF dxÞ
¼ �chðT ÞdT=ða0ðT Þav dtÞ ¼ �vdT =dt

¼ �dT=ds ð91Þ

of which the two last ones are the most suitable. In Eq. (91)
v = ch/(a 0av) is a time constant for the energy exchange pro-
cess. Two other useful quantities can also be selected in Eq.
(91). The first one is a spatial scale for the overall transfer,
HTU,

_V cv

a0avF
¼ H TU;

whereas the second is a non-dimensional time, s,

s � x
H TU

¼ a0avF
_V cv

x.

HTU has the units of length and is known as the ‘height of
the heat transfer unit’. By definition the HTU introduced
above is referred to the radiation fluid at state 1. The inde-
pendent variable s is a non-dimensional length, s = x/HTU

called the ‘number of transfer units’. Clearly s measures the
system extent, and it is a measure of the fluid’s residence
time t. Due to the similar type of dependence of a 0 and ch

on T, the time constant v � cs/(a 0av) linking t and s is prac-
tically temperature independent. This substantiates the use-
fulness of s.

For ignored thermal resistance of environmental fluid
(entropy production only due to the emission and adsorp-
tion of radiation), the overall coefficient of radiation energy
transfer, a 0, varies proportionally to T3, and so does ch. In
this limiting case v is constant exactly, in other cases its
constancy is only an approximation. Assuming a non-dissi-
pative environment one can accept the constancy of v in
the last two expressions of Eq. (91) as a suitable property.
With Eq. (91) the efficiency formula (90) becomes a simple
modification of the Carnot formula

g ¼ 1� U
T 0

T þ vdT=dt
¼ 1� U

T 0

T þ dT=ds
. ð92Þ

Yet, this result is not as universal as its quasistatic (zero
rate) limit; in fact its denominator contains the Carnot tem-
perature operator T 0ðT ; _T Þ in the form restricted to pseudo-
Newtonian models. Primarily classical fluids satisfy Eq.
(92), see, e.g. [6,45,46]; its applicability to radiation is due
to the approximate constancy of v, discussed above.

The process is the passage of the vector T = (T,s) from
its initial state Ti to its final state Tf. In absence of frictional
effects the power functional corresponding to efficiency (92)
is the following generalization of reversible functional
(49)

_W f ¼ � _V
Z T 0

T
cvðT Þ 1� U

T 0

T þ vdT=dt

� �
þ P T

� �
dT

¼ � _V
Z T 0

T
chðT Þ � cvðT ÞU

T 0

T þ vdT=dt

� �
dT ; ð93Þ

where PT � dP/dT = (4/3)aT3 and ch(T) � cv(T) + PT =
(16/3)aT3. A more transparent form of the above power
integral is obtained after transforming it so as to extract
from it the effect of the reversible power (49) and the asso-
ciated efficiency term. For the pseudo-Newtonian model we
obtain

_W f ¼ � _V
Z T 0

T
chðT Þ � cvðT Þ

T 0

T

� �
dT

� T 0
_V
Z T 0

T
cvðT Þ

vðdT =dtÞ2

T ðT þ vdT =dtÞ

  

þð1� UÞ dT =dt
T þ vdT =dt

��
dt. ð94Þ

Associated entropy production per unit flowing volume
can be evaluated as the difference between the outlet and
inlet entropy fluxes. In terms of the Carnot temperature
T 0 = T1 + vdT1/dt and after using q2 = q1UT0/T 0 we find
for the pseudo-Newtonian model
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rs ¼
q2

T 2

� q1

T 1

¼ g0ðT 1 � T 0Þ2

T 1T 0
þ q1

ðU� 1Þ
T 0

. ð95Þ

This is consistent with general equation (73) and the model-
related equation (89). Comparison of Eqs. (94) and (95)
shows that the term multiplied by T0 in the power
expression (94) is the entropy production of the pseudo-
Newtonian model. It is here split into the sum of two
non-negative terms. The first term, related to the approxi-
mate description of the effect of emission and adsorption
of radiation, is obviously positive. The second term, or
the product q1(U � 1)/T 0, is always non-negative as the
signs of q1 and U � 1 are the same (positive for engine
and negative for heat pump). A concise form of power
functional (94)

_W f ¼ � _V
Z T 0

T
chðT Þ � cvðT Þ

T 0

T

� �
dT � T 0

_V
Z T 0

T
rv dt

ð96Þ

(where, for photons cv(T) = 4aT3) is in agreement with the
Gouy–Stodola law. This form is quite general and not re-
stricted to the pseudo-Newtonian model. However, the
(first) reversible term of this equation apparently shows
the disagreement between the resulting, reversible efficiency
and the Carnot efficiency. Therefore we stress that the
reversible thermal efficiency of the radiation conversion is
always Carnot. Indeed, comparison of Eqs. (48) and (49)
shows that the apparent disagreement is caused by the
additive, work-related term PT � dP/dT in the exergy for-
mulae, Eqs. (49), (93) and a like. For radiation fluids, the
pressure contribution to the exergy in the form of the term
PT � dP/dT is masked by the dependence of P on T.

Integration of the first (reversible) part of integral (96)
and calculation of _W rev

f = _V yields the classical exergy of
flowing radiation fluid per unit volume, Eqs. (48)–(53).
When the environment temperature is not necessarily a
limit of the integration, the specific work of flowing radia-
tion between two arbitrary states is obtained as the exergy
difference. From Eq. (51)

_W rev
f = _V ¼ �

Z T f

T i

fð16=3ÞaT 3 � 4aT 2T 0gdT

¼ ðhi
v � hf

vÞ � T 0ðsi
v � sf

vÞ ¼ Dbv. ð97Þ

These results are in agreement with general thermodynam-
ics. They confirm that the first term of power functional
(94) is path independent. Thus, whenever an extremum of
the functional is sought, only the second, irreversible term
contributes to the optimization solution.

In terms of non-dimensional time s = t/v and per unit
system volume entropy production functional of the
pseudo-Newtonian model, Eq. (94), is

svgen � _Sgen= _V

¼
Z T 0

T
cvðT Þ

_T 2

T ðT þ _T Þ
þ ð1� UÞ

_T

T þ _T

� �� �
ds. ð98Þ
The additive structure of two parts in Eq. (94) is an impor-
tant property that causes that the two problems of extre-
mum work (94) and the associated problem of minimum
entropy generation (98) have the same solutions whenever
end states are fixed. The optimization problem can thus be
stated as the variational problem for either functional of
work or of entropy production. When work W is an opti-
mization criterion, the problem is that of maximum W for
engine mode and that of minimum of (�W) for heat-pump
mode. When optimization of the entropy production is
considered, a minimum is sought for each process mode.
The generalized exergy is the extremum of W with appro-
priate integration limits (Ti = T and Tf = T0 for the engine
mode and Ti = T0 and Tf = T for the heat-pump mode. In
the quasistatic limit (zero rates, _T ¼ 0Þ, Eq. (94), leads al-
ways to classical exergy. Moreover, it leads to the same
classical exergy for each mode when proper integration
limits, stated above, are used. The absolute value of work
(94) describes a change of generalized exergy of radiation
in operations with imperfect thermal machines and when
dissipative phenomena due to the radiation emission and
adsorption are essential.

We focus here on the minimum entropy production for-
mulation for functional (98). An equation for the optimal
temperature follows from the condition e = h, where
e ¼ ðoL=o _T Þ _T � L is the energy-like integral for Lagrangian
L contained in equations of power or entropy production,
and h is a constant value of e determined from the bound-
ary conditions for T and s. The present h has units of
entropy density or specific heat per unit volume, and
should be distinguished from other Hamiltonians used
occasionally with respect to the energy, E = h. Our
h = H/VT0, where H is the Hamiltonian expressed in the
energy units and V is the volume. For any rate independent
U the first integral for L of Eq. (98) is

eðT ; _T Þ ¼ oL

o _T
_T � L ¼ UcvðT Þ

_T 2

ðT þ _T Þ2
¼ h. ð99Þ

We obtain an optimal trajectory from Eq. (99). After intro-
ducing the function

n
h

UcvðT Þ

� �
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

UcvðT Þ

s
1��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

UcvðT Þ

s !�1

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UcvðT Þ

h

r
� 1

 !�1

ð100Þ

(upper sign refers to the heat-pump mode, lower one to the
engine mode) a pseudo-exponential extremal follows in the
form

_T ¼ nðh;U; T ÞT . ð101Þ
In this equation the slope of the logarithmic rate n = dln
T/ds is a state dependent quantity. The slope n is the rate
indicator, positive for the fluid’s heating and negative for
fluid’s cooling.
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Application of extremal (101) in Eq. (98) leads to the
minimum entropy production in the form

svgen ¼
Z T f

T i

cvðT Þ
T

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h
UcvðT Þ

s 

þð1� UÞ 1��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h
UcvðT Þ

s !!
dT . ð102Þ

With this result and the Gouy–Stodola law we obtain the
density of generalized exergy for the fluid at flow

avðT ; T 0; hÞ ¼ bvðT ; T 0; 0Þ � T 0svgen

¼ 4

3
aT 4ð1� T 0=T Þ � T 0

Z T 0

T

cvðT Þ
T

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h
UcvðT Þ

s 

þð1� UÞ 1��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h
UcvðT Þ

s !!
dT ; ð103Þ

where the second-line term is non-classical. For radiation
cv = 4aT3 and the expression h = (4/3)aT4 is the enthalpy
of the radiation fluid. The classical term in the above ex-
ergy equation is the reversible flow exergy of black radia-
tion per unit volume which is recovered at the reversible
limit when Hamiltonian h = 0. This classical exergy satis-
fies the formula

bv � _Bf= _V ¼ hv � hv0 � T 0ðsv � sv0Þ ð104Þ
consistent with Eq. (55) for the radiation fluid. For that
fluid the optimal trajectory which solves Eqs. (100) and
(101) is

�ð4=3Þa1=2U1=2h�1=2ðT 3=2 � T i3=2Þ � lnðT =T iÞ ¼ s� si.

ð105Þ

The integration limits refer to initial (i) and current state
(no index) of the radiation fluid, i.e. to temperatures Ti

and T, corresponding with si and s. Fig. 2 shows an exam-
ple of optimal paths for radiation in both process modes.
Relaxation to the equilibrium occurs in engine mode
whereas utilization or escape from the equilibrium – in
heat-pump mode. Clearly, radiation does not relax expo-
nentially. Qualitative difference of relaxation curve from
those describing exponential relaxation in linear processes
is observed.

Eq. (105) also allows to draw curves describing non-
dimensional durations tf � si in terms of Hamiltonian h

for various internal irreversibilities / and at fixed end tem-
peratures Ti and T = Tf. This is illustrated in Fig. 3, for
Ti = 300 K and Tf = 5800 K.

After inverting these data to obtain curves for which
duration sf � si is an independent variable one can solve
the problem of numerical value of Hamiltonian needed
for a prescribed duration, as shown in Fig. 4.

Eqs. (104) and (105) are associated with the entropy
production (98) and the generalized availability of radi-
ation
avðT ; T 0; hÞ ¼ bvðT ; T 0; 0Þ

� ð4=3Þa1=2h1=2U1=2T 0ðT 3=2 � T 3=2
0 Þ

þ ð4=3ÞaT 0ð1� UÞðT 3 � T 3
0Þ. ð106Þ

The classical availability of radiation at flow resides in the
above equation in Jeter’s form

bvðT ; T 0; 0Þ ¼ hv � hv0 � T 0ðsv � sv0Þ
¼ hvð1� T=T 0Þ ¼ ð4=3ÞaT 4ð1� T=T 0Þ ð107Þ

(see Eq. (55) and Ref. [23]).
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As two modes are included, in generalized availability
(106) the common symbol T refers to the initial tempera-
ture of engine mode or the final temperature of heat-pump
mode of the process. The qualitative properties of this
availability function are similar to those described in
Fig. 2 of our earlier paper [1]. The variable non-dimen-
sional duration in engine or heat-pump modes is denoted
in Fig. 2 of [1] by the common symbol Ds.

The slope n is constant in traditional Newtonian fluids
with a constant cv. n is positive for fluid’s heating process
(heat pump mode) and negative for a fluid’s cooling pro-
cess (engine mode). The numerical value of Newtonian n
characterizes a constant logarithmic intensity satisfying
the relation d lnT = nds. Its integration for the fixed-end
boundary conditions leads to familiar equation

T ðsÞ ¼ T i expðnðs� siÞÞ. ð108Þ

The associated Carnot temperature control ensuring
extremum work is

T 0ðsÞ ¼ T ðsÞð1þ nðUÞÞ

¼ T iðT f=T iÞðs�siÞ=ðsf�siÞð1þ lnðT f=T iÞ=ðsf � siÞÞ. ð109Þ

It corresponds with the power formula (85) in the case
m = 1. The exponential decay of T, implied by Eq. (108)
in Newtonian engine mode (negative n), can be compared
with temperature decrease in radiation relaxation process
described by Eq. (105). The value of n can be determined
from the boundary conditions of the fixed-end problem

n ¼ ðsf � siÞ�1 lnðT f=T iÞ. ð110Þ

In the Newtonian process the density of entropy generated
is described by the formula
svgen ¼ cv �
ffiffiffiffiffiffiffiffi

h
Ucv

r� �
þ ð1� UÞ 1��

ffiffiffiffiffiffiffiffi
h

Ucv

r� �� �
ln

T f

T i
.

ð111Þ
For endoreversible processes (U = 1), we recover from
above equation the special formula

svgen ¼ �cv

Z T f

T i

ffiffiffiffi
h
cv

r
d ln T ¼ �cv

ffiffiffiffi
h
cv

r
ln

T f

T i
. ð1110Þ

This result is exploited to obtain the generalized exergy of a
compressible Newtonian fluid in which viscous friction is
ignored

bvðT ;T 0;hÞ¼bvðT ;T 0;0Þþcpv
T 0

n
1þn

� �
lnðT=T 0Þ

¼cpv
T 0 ðT=T 0�1Þ� lnðT=T 0Þþ lnðP=P 0Þ

k�1
k

h i

þcpv
T 0 �

ffiffiffiffiffiffiffiffiffi
h

Ucpv

s !
þð1�UÞ 1��

ffiffiffiffiffiffiffiffiffi
h

Ucpv

s ! !
ln

T
T 0

.

ð112Þ

The last line describes the rate-related term. In the classical
case the pressure contributes to the exergy with a separate
term. This is not a surprise because in this case T and P are
two independent variables, whereas in the case of radiation
the specification of T already defines the pressure P. It may
be shown that for a linear fluid the logarithmic mean of
temperatures T and T0 plays the role of a substitutional
temperature on which the Carnot efficiency is based, and
that the classical thermal exergy of the linear fluid is equal
to the product of enthalpy change cp(T � T0) and this par-
ticular efficiency.

10. Dynamical models using Stefan–Boltzmann equation

Again, the optimization task is to find an optimal profile
of the driving temperature T 0 along the radiation resource
path (path of fluid 1) that assures the minimum of the inte-
gral entropy production and – simultaneously – the extre-
mum of the work consumed or delivered. However the
non-dimensional time s of the previous section related to
overall number of transfer units cannot be now used as it
is no longer an effective variable. Rather a suitably defined
time variable s1 (associated solely with the properties
resource fluid; Eq. (120) below), will be applied.

Exact modeling of mechanical power yield from radia-
tion, that uses the Stefan–Boltzmann equation, involves
several difficulties. As in each rigorous model non-lineari-
ties are irreducible. They may be attributed to the temper-
ature dependence of quantity Gc � GCm or the product of
the molar fluid’s flow and its molar heat capacity. From
Eq. (6) capacities per unit volume are cv(T) � 4aT3 and
ch(T) � cv(T) + dP/dT = (16/3)aT3. Whereas, from Eq.
(26), the ratio of photons volume to their number or a sin-
gle photon volume (the reciprocal of the number density) is

vph �
V
N
¼ kBT

P ðT Þ ¼
3kB

a
T�3 ¼ c

4p
T�3. ð113Þ
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The molar volume, Vm, is the product of this quantity and
Avogadro number, Av. This leads to evaluation of products
cvph
� vcvðT Þ ¼ 12kB and chph

� vchðT Þ ¼ 16kB. This also
means that molar heat capacities of black photons are,
respectively, Cmv = 12R and Cmh = 16R, where R is the
universal gas constant.

As shown by the state equation (26), products _V cvðT Þ
and _V chðT Þ in power functionals (49), (93) and (94) vary
in time. For a constant _V , Eq. (26) implies that both particle
and molar flows, _N and _Gm ¼ _N=Av, are proportional to T3.

_Gm ¼
4p
cAv

T 3 _V ¼
_V

V m

ð114Þ

(Note that in our previous work [1] we used the bare sym-
bol G for the molar flux.) Eq. (114) is, in fact, a simple
transformation of Eq. (26). For a constant _V Eq. (114)
proves the decrease of the photons flux in the engine mode
and the increase of this flux in the heat pump mode. These
effects are associated with corresponding decrease and in-
crease of T along the process path. The products G·mCmv

and G·mCmh are respectively

GCmv ¼
48kBp

c
T 3 _V GCmh ¼

64kBp
c

T 3 _V . ð115Þ

These formulae serve to accomplish effective calculations of
the work integrals.

However, there are also non-linearities associated with
analytical structure of differential constraints, different
from those in pseudo-Newtonian model of Section 9. In
fact, the differential constraint of that model was contained
in Eq. (91) linking the local heat control t with the temper-
ature change, t = � vdT/dt = � dT/ds. Simplicity of that
constraint caused its easy imbedding in the power func-
tional. Yet, in non-linear models of the present section con-
strains are non-linear counterparts of Eq. (91), thus they
are more involved, an example is Eq. (129) below. Their
imbedding into power functionals (to express these in terms
of T and dT/dt) is not always possible, so they reside in the
mathematical model as separate entities. Therefore typical
control schemes are those of Pontryagin’s maximum prin-
ciple where controls are more complex than the simple
derivatives of state coordinates with respect to time.

Based on local power expression p1 = gq1 the cumulative
power is the integral over gd _Q1 or

_W ¼
Z _Q1

0

1� U
T 2

T 0

� �
d _Q1. ð116Þ

From the energy balance the differential energy flux q1 cor-
responding with infinitesimal changes of dT1, dx and dt

equals d _Q1 ¼ � _GmðT 1ÞCm dT 1. The related functional of
cumulative power is

_W ¼ �
Z tf

ti

_GmðT 1ÞCm 1� UT 2

T 0

� �
_T 1 dt. ð117Þ

In hybrid models it is possible to express T 0 in the form
T 0 ¼ T 0ðT 1; _T 1Þ, as we shall see soon. In power formulas
like the above, the dots over symbols refer either to flow
quantities (e.g. G·m(T1)) or to time derivatives of thermal
potentials (e.g. T1) with respect to physical time, t, which
is the contact time of the driving fluid with the power gen-
erator. However, it should be noted that, due to the invari-
ance _T ðtÞ1 dt ¼ _T ðnÞ1 dn, the product _T 1 dt in the above
functional describes the same differential dT1 for any defi-
nition of time variable. Such definition can involve non-
dimensional times s and s1, cumulative area A, or fluid’s
contact time t. In effect, dots over the temperature symbol
in formulas like (117) may be referred to an arbitrary inde-
pendent variable, whereas dots over the symbols of flow
quantities (e.g. _GmðT 1Þ) must be reserved to flows in phys-
ical time, t.

With Eq. (80) the cumulative power of the entropy pro-
duction describing lost work in equations of extended
availabilities is an integral

rs ¼ �
Z tf

ti

_GmðT ÞCm

U
T 0
� 1

T 1

� �
_T 1 dt. ð118Þ

For fixed end states the limiting production or consump-
tion of mechanical energy is associated with extremum
work (117) or minimum of entropy production (118).
Whenever an operator describing Carnot temperature T 0

in terms of radiation temperature T1 and its time derivative
can be found, variational calculus can be applied to solve
the optimization problem of extremum work. In the oppo-
site case Eq. (118) and the related work functionals must be
written in the form in which T 0 and T1 are two distinct vari-
ables in an algorithm of the optimal control. This is Pon-
tryagin’s algorithm in which a differential equation
constraints changes of T1, dT1/dt, and T 0 (see Eq. (129)
below).

We shall now specialize with the symmetric non-linear
case. It involves the radiative heat transfer (m = 4) in both
reservoirs and corresponds with form (80) of the local
entropy production. We exploit both the variable heat-
capacity flux _GchðT Þ and the effective heat coefficient
a1(T1) to define the non-dimensional time s1 by the equality

q1=g1N ¼ g1ðT m
1 � T m

10 Þ=g1N

¼ � _GchðT 1ÞdT 1=ða1ðT 1ÞavF 1 dxÞ
� �dT 1=ds1 ¼ rðT m

1 � T m
10 Þ=a1ðT 1Þ

ffi T 1 � T 10 ; ð119Þ

where the ratio g1/g1N above equals r/a1 = T�3 and
_Gch � _Gmcmh is the product of the fluid’s molar flow and
its molar heat capacity, the second expression in Eq.
(115). The non-dimensional time s1 is defined by the
equality

ds1 ¼
a1ðT 1ÞavF 1

_GchðT 1Þ
dx. ð120Þ

Since both quantities _Gch and a1(T1) vary as T3, the effect of
T cancels out and non-dimensional time s1 is a suitable
quantity proportional to physical residence time t. Eq.
(119) describes the energy balance for the radiation fluid.
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The non-dimensional time s1 is simultaneously the number
of energy transfer units related to the fluid in state 1. Eq.
(119) shows that the driving energy flux can be measured
in terms of the temperature drop of radiation fluid per unit
of non-dimensional time s1. Eq. (119) is, in fact, a mixed
structure: while it uses Stefan–Boltzmann law, it also bears
some properties of pseudo-Newtonian systems due to the
presence the transfer coefficient a1(T1) in the definition of
non-dimensional time s1. After using Eq. (76) for T 10 ,

T 10 ¼ T m
1 � g2

T m
1 � T 0m

Ug1ðT 0=T 2Þm�1 þ g2

 !1=m

ð76Þ

in Eq. (119) we obtain the state equation

�dT 1=ds1 ¼ T 1 � T m
1 � g2

T m
1 � T 0m

Ug1ðT 0=T 2Þm�1 þ g2

 !1=m

.

ð121Þ
We may also proceed in another way. We exploit energy

exchange formula (77)

q1 ¼ g1g2

T m
1 � T 0m

Ug1ðT 0=T 2Þm�1 þ g2

ð77Þ

with conductances gi = rAi based on universal Stefan–
Boltzmann constant, r. Comparing two boundary expres-
sions of formula (119) with Eq. (77) we obtain a differential
equation

dT 1=ds1 ¼ �
g1g2

g1N

T m
1 � T 0m

Ug1ðT 0=T 2Þm�1 þ g2

; ð122Þ

which corrects Eq. (35) of our previous work [1] by inclu-
sion of ratio g2/g1N. For radiation the ratios g2/g1N and
g1/g1N appearing in formula (122) equal respectively

r=a1 ¼ T�ðm�1Þ
1 ¼ T�3

1 and r=a2 ¼ T�3
2 .

While each of Eqs. (121) and (122) can be used as a con-
straint in the optimization of work (117) their transfer-
coefficient base lead us to a further search towards an exact
equation containing only universal (Stefan–Boltzmann)
constants. This exact equation can be obtained from an
alternative form of energy balance (119) which is

�GchðT 1ÞdT 1 ¼ r1ðT m
1 � T m

10 ÞavF 1udt

¼ r1ðT m
1 � T m

10 Þav
_V dt. ð123Þ

Note that the time variable used is the contact time of the
radiation fluid with the energy generator, i.e. t = t1, but, for
simplicity, we shall further neglect index 1 when designat-
ing any property of the fluid. This will also serve to point
out that such properties can be variable quantities rather
than constants. Expressing in Eq. (123) molar flux _Gm as
a function of volume flux _V and molar volume Vm

_Gm ¼
_V

V m

¼ 4p
cAv

T 3 _V ¼ p0
mT 3 _V ; ð124Þ

where p0
m � 4p=ðcAvÞ is the molar constant of photon’s den-

sity we obtain
�cmh
dT 1

dt
¼ r1ðT m

1 � T m
10 ÞavV m. ð125Þ

This simple result describes, in fact, heating of one mole of
photons with volume Vm and effective heat capacity cmh in
an energy exchange process governed by the Stefan–Boltz-
mann law. Writing molar volume Vm in terms of the uni-
versal constant, V m ¼ T�ðm�1Þ=p0

m, we obtain

dT 1

dt
¼ �b

T m
1 � T m

10

T m�1
1

; ð126Þ

where

b � r1av

chmp0
m

. ð127Þ

As T 10 is not an independent control variable, it is suitable
to express this equation in terms of variables such as T 0 or g
that are independent controls. In terms of Carnot temper-
ature the differential constraint is obtained by using Eq.
(76) in (126); the result is

dT 1

dt
¼ � r1av

chmp0
m

� �
T m

1 � T 0m

ðUðg1=g2ÞðT 0=T 2Þm�1 þ 1ÞT m�1
1

. ð128Þ

Now we can ignore subscript 1 in the variable temperature
of the radiation fluid and lump coefficients into a single
constant b. In terms of the fluid’s variable temperature
T = T1(t) and Carnot temperature T 0 the state equation
(128) is

dT
dt
¼ �b

T m � T 0m

ðU0ðT 0=T 2Þm�1 þ 1ÞT m�1
; ð129Þ

where coefficient b is defined by Eq. (127) and

U0 � Ug1=g2 ð130Þ
and time variable t is the contact time of the radiation fluid
with the engine.

We shall now consider the hybrid non-linear case in
which the radiative energy transfer (m = 4) occurs only in
the first (upper) reservoir. Whereas, in the second reservoir,
the energy exchange is governed by mechanism of convec-
tive heat exchange described by Newton’s law (81)

q2 ¼ g2ðT 20 � T 2Þ. ð81Þ
In order to obtain a power functional in this case we use
the particular representation of power p in terms of T 10

p ¼ q1g

¼ g1ðT m
1 � T m

10 Þ 1� UT 2

T 10 � Ug1ðT m
1 � T m

10 Þ=g2

� �
. ð84Þ

From the energy balance the differential energy flux q1 cor-
responding with changes of dT1, dx and dt equals
d _Q1 ¼ � _GmðT 1ÞChm dT 1. Calculating cumulative power as
the integral over gd _Q1 with the help of Eqs. (83), (84)
and (117) yields

_W ¼ �
Z tf

ti

_GmðT 1ÞChm 1� UT 2

T 10 � Ug1ðT m
1 � T m

10 Þ=g2

� �
_T 1 dt.

ð131Þ
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With Eq. (126), temperature T 10 of Eq. (131) can be
expressed in terms of variables T and dT1/dt. Conse-
quently, the production (consumption) of mechanical
energy is described by the following power integral

_W ¼ �
Z tf

si

GcðT 1Þ 1� UT 2

ðT m
1 þ _T m

1 Þ
1=m þ U _T m

1 g1=g2

 !
_T 1 ds1.

ð132Þ

The temperature function _GchðT Þ in Eq. (132) and in power
equations below is defined as

_GchðT Þ � _GmChm ¼
64kBp

c
T 3 _V Chm ¼ p0

mT 3 _V Chm. ð133Þ

This formula follows from the second expression in Eqs.
(115) and (124). Eq. (132) uses operator representation of
the temperature of upper circulating fluid

T m
10 ¼ T m

1 þ
dT m

1

abdt
� T m

1 þ
dT m

1

ds1

� T m
1 þ _T m

1 ; ð134Þ

which results from Eq. (126). This operator representation
also defines the dimensionless time of the problem,
s1 � bat.

The related expression for the total entropy production
is

rs ¼ �
Z sf

si

_GchðT 1Þ
U

ðT m
1 þ _T m

1 Þ
1
m þ _T m

1 Ug1=g2

� 1

T 1

 !
_T 1 ds1.

ð135Þ
While an equation of this form was suggested earlier [1],
only the present work defines the relation between dimen-
sionless time and physical or contact time: s1 � bmt. As
it is our policy here to prefer formulae using physical time
t, we write down below power formula (132) in terms of t

rather than s

_W ¼ �
Z tf

si

_GchðT 1Þ 1� UT 2

ðT a
1 þ v _T m

1 Þ
1=m þ Uv _T m

1 g1=g2

 !
_T 1 dt;

ð136Þ

where v = (mb)�1 and _T m
1 � dT m

1 =dt ¼ mT m�1
1 dT=dt.

Hence, after the omission of undue subscript 1 at T1

_W ¼�
Z tf

si

_GchðT Þ 1� UT 2

ðT aþb�1T m�1 _T Þ1=mþUb�1T m�1 _T g1=g2

 !
_T dt.

ð137Þ

Eqs. (132) and (135)–(137) contain Carnot temperature
operator T 0 expressed in terms of temperature of upper res-
ervoir and its appropriate time derivative. As these equa-
tions are the Lagrange functionals, the classical method
of calculus of variations can be applied for their optimiza-
tion. Yet, this property only refers to the hybrid model, be-
cause the Lagrange structures do not appear in the
symmetric model (with the radiative exchange on both
sides of the engine).
Optimal control approaches are also possible for hybrid
models. After identifying the temperature derivative as the
possible control _T ¼ u we obtain

_W ¼�
Z tf

si

_GchðT Þ 1� UT 2

ðT mþb�1T m�1uÞ1=mþUb�1T m�1ug1=g2

 !
udt.

ð138Þ
The differential constraint for the above integral has a

trivial form resembling the one in Eq. (91)

dT=dt ¼ u. ð139Þ
Analogously one can treat integral of the entropy produc-
tion, Eq. (135). In terms of u the procedure yields the
functional

rs¼�
Z tf

ti

_GchðT Þ
U

ðT mþb�1T m�1uÞ1=mþUb�1T m�1ug1=g2

� 1

T

 !
udt.

ð140Þ

Again, it should be minimized subject to Eq. (139).
As in the case of symmetric problem, integrals of power

and entropy production of the hybrid problem can always
be treated by the algorithm of Pontryagin’s maximum prin-
ciple. In that case Eq. (138) or (140) are optimized subject
to constraint (139). However, the most suitable way in opti-
mization of hybrid models is to write down and then solve
the Euler–Lagrange equation of the variational problem.
For this purpose functionals of T and _T are relevant, such
as Eqs. (135) or (136). Analytical solutions are seldom, thus
one has to rest on numerical techniques.

11. Hamilton–Jacobi–Bellman approaches

We shall now describe some benefits resulting from the
derived differential models. Eqs. (121), (122), (126), (128),
(129) and (139) are differential constraints in problems
extremizing power or total entropy production treated by
Pontryagin’s maximum principle. This extremization leads
to optimal profiles T 0(s1) and T1(s1) that assure extremum
work produced in a sequential engine system (Fig. 1) or
consumed in a sequential heat pump system. Both systems
are multistage arrangements with an infinite number of
infinitesimal stages. The extremum work obtained refers
to a finite-time exergy of the resource fluid working in a
continuous system. An example is the extended exergy
referred to Eq. (106). Its discrete counterparts for finite
stages are also of interest (see our next paper [49]). Both
kind of functionals (those for work and those for the
entropy production) yield the same optimal paths when-
ever boundary states and times are assumed fixed at the
beginning and end of the operation.

With power functionals at disposal we can formulate the
Hamilton–Jacobi–Bellman theory (HJB theory) for extre-
mum work and related extended exergy. Hamiltonian and
Lagrangian formalisms associated with extremum work
can also be developed. The latter are most suitable settings
for optimal paths although the principal function
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(optimum work function) is not explicit in them. In these
formalisms the principal function is found after finding
an optimal path and by the evaluation of the work integral
along this path.

The HJB theory of the principal function is the basic
ingredient in variational calculus and optimal control
[35–42]. HJB equations can be continuous or discrete.
The former are associated with ordinary differential equa-
tions (such as those in this paper), the latter – with differ-
ence equations. Bellman’s recurrence equation can be
regarded as a discrete HJB equation, yet there are also dis-
crete equations that are structurally closer to HJB equa-
tions of continuous systems [42]. A HJB equation
generalizes the classical Hamilton–Jacobi equation [37,39]
by inclusion of extremum conditions for control variables.

In a future paper along this line we shall formulate and
solve HJB equations for some continuous models of this
work. We shall also develop discrete counterparts of these
models for genuine cascade processes with stages of finite
size. It will be essential to develop numerical methods in
complex cases with state dependent coefficients, when a
HJB equation cannot be solved analytically. Due to the
direct link between the HJB theory and the method of
dynamic programming associated numerical approaches
will make use Bellman’s recurrence equation [41,42].

Work optimization in discrete systems (cascades) applies
directly the one-stage model of energy production or con-
sumption i.e. the Chambadal–Novikov–Curzon–Ahlborn
(CNCA) engine [43]. Its non-linear extension called
Stefan–Boltzmann engine [7] is, in fact, the subject matter
of Section 8 of the present paper, although we use in its
description a non-standard control, Carnot temperature
T 0. Our future analysis will extend this model to multistage
processes (for applications of single-stage models to endo-
reversible conversion of radiation, see [7,12,13,32,33,44]).
This extension will also lead to generalized exergies of gen-
uine discrete processes with radiation.

12. Final remarks

In this research dynamical state equations are obtained
for continuous processes with radiation. These are ordin-
ary differential equations that describe the response of a
radiation system to an external control. Also generalized
exergies are found under pseudo-Newtonian approxima-
tion. Examples of these exergies are shown in Eqs. (106)
and (112) of this paper. In a future paper along this line
[49] optimization algorithms (HJB equations, dynamic pro-
gramming equations and Hamilton’s canonical sets) will be
obtained and solved for these continuous processes as well
as for their genuine discrete counterparts, describing cas-
cades with finite stages.

Generalized exergy of a continuous process, A1, prohib-
its processes from operating below the heat-pump mode line
(for a fractional value of U) thus yielding a lower bound for
work supplied. It also prohibits processes from operating
above the engine mode line (for a value of U larger than
unity) which defines an upper bound for work produced.
Diagrams of generalized exergy mark regions of possible
improvements when imperfect thermal machines are
replaced by those with better performance coefficients, ter-
minating at endoreversible limits for Carnot machines.

Generalized exergies are irreversible extensions of the
classical exergy by including minimally irreversible pro-
cesses. Limiting work estimates made with the help of clas-
sical exergies are too weak and often insufficient;
generalized exergies, whose examples are given here, assure
stronger work limits [45–49].

A generalized exergy of processes departing from the
equilibrium (fluid’s utilization) is larger than the one in
processes approaching the equilibrium (fluid’s relaxation).
This is because one respectively adds or subtracts the prod-
uct of T0 and entropy production in a formula describing
the generalized exergy. By taking into account the entropy
production, limits for mechanical energy yield or consump-
tion provided by generalized exergies are stronger than
those defined by the classical exergy. It follows that finite
rates in real processes increase a minimum work that must
be supplied to the system and decrease a maximum work
that can be produced by the system. These conclusions help
an engineer in better evaluation of energy limits in practical
processes with radiation, especially in those undergoing in
solar engines, solar driven heat pumps and solar cells.
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